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A significant number of transition-metal complexes
containing sulfoxides and sulfides has been reported;3
however, relatively few chiral complexes containing
sulfur have been described,3a,4 and in most of these cases,
chiral sulfoxides were first synthesized and complexation
with various transition-metal complexes was then carried
out.3a,4a,b Chiral transition-metal complexes containing
sulfides have not been reported. Furthermore, asym-
metric catalysis utilizing chiral transition-metal com-
plexes containing sulfur is relatively rare.3a,4 We have
studied the stereoselective synthesis of various chiral bi-
and tridentates containing sulfur and their use in asym-
metric catalysis. We now report a stereoselective syn-
thesis of enantiomerically pure 2-substituted 1-(tert-
butylsulfinyl)ferrocenes via the trapping of (SR,1S,2R)-
1-(tert-butylsulfinyl)-2-lithioferrocene (1) with various
electrophiles, subsequent conversion to sulfides and sul-
fones, and stereoselective addition to (SR,1S,2R)-1-(tert-
butylsulfinyl)-2-formylferrocene.
Our goal was to first synthesize a chiral ferrocenyl

sulfoxide and then stereoselectively introduce a second
functional group at C-2 of the ferrocene ring. For the
synthesis of enantiomerically pure ferrocenyl sulfoxide,
we initially investigated the direct sulfinylation of fer-
rocene (2) with t-BuLi in THF at 0 °C followed by the
addition of (SS)-l-menthyl p-tolylsulfinate (3) at -78 °C
for 2 h (Scheme 1). (SS)-(p-Tolylsulfinyl)ferrocene (4) was
isolated in 55% yield with a specific rotation of +246° (c
) 0.5, CHCl3).5 Kagan et al.4d reported a similar reaction
in which sulfinate 3 was allowed to react with lithiated
ferrocene at 0 °C yielding sulfoxide 4 with a specific
rotation of +4° (S-configuration). From a later report by
Kagan et al.4f describing the synthesis of 4 from the
asymmetric oxidation of the corresponding sulfide, we
realized that our product 4 is 81% ee. This partial race-
mization process6 at -78 °C, resulting from nucleophilic
attack by lithiated ferrocene on (SS)-4 to provide (SR)-4,

was proven by the treatment of our 81% optically pure
(SS)-4 with 1 equiv of lithiated ferrocene in THF at 0 °C
for 1 h (derived from 2 and t-BuLi), which gave racemized
4 [[R]22D ) +25.4°; 8% ee]. Surprisingly, in contrast to
the reported4e C-2 deprotonation of ferrocenyl sulfoxides
with various bases (such as n-BuLi and LDA), treatment
of 4 with t-BuLi in THF at -78 °C for 2 h resulted in the
formation of tert-butyl p-tolyl sulfoxide (5; 41% yield) and
ferrocene (2; 84% yield) from the nucleophilic displace-
ment reaction at the sulfur center.7 To avoid the nu-
cleophilic displacement reaction, we investigated a bulkier
sulfoxide, (SR)-(-)-(tert-butylsulfinyl)ferrocene (6),4f and
a sterically hindered base, (2,4,6-triisopropylphenyl)-
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Scheme 1

Table 1. Products and Yields of the Reactions of the
Lithiated Anion of 6 with Various Electrophiles

a Yields based on recovered starting sulfoxide 6 (5-25% recov-
ery). b Reagents: entry 1, (CH2O)n; entry 2, EtOCHO; entry 3,
ClCO2Me; entry 4, BrCH2CHdCH2; entry 5, ClSi(Me)2CH2CHdCH2;
entry 6, ClSi(Me)2CH2Cl; entry 7, ClSnMe3; entry 8, Me3SiOOSiMe3;
entry 9, ClPPh2.

Scheme 2
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lithium (7).8 Following Kagan’s method4f using L-(R,R)-
diethyl tartrate (DET), titanium tetraisopropoxide, and
cumene hydroperoxide (CHP) in CH2Cl2 and H2O at -25
°C for 72 h, we converted sulfide 8 into sulfoxide (SR)-6
in 61% yield with specific rotation [R]22D ) -357.8° (c
0.505, CHCl3; ∼100% ee) [lit.4f [R]22D ) -339° (c 0.505,
CHCl3); R-configuration, 95% ee] (Scheme 2). Treatment
of sulfoxide (SR)-6 with the hindered base 7 in THF at
-40 °C followed by trapping of the lithiated anion 1 with
paraformaldehyde afforded an 87% yield (based on 5%
unreacted 6) of alcohol 9. The absolute configuration of
9 was determined by a single-crystal X-ray analysis
indicating an (SR,1S,2R)-configuration.9a The crystal has
an acentric space group, P212121 with R ) 0.048 and Rw

) 0.042.9b The 1H NMR spectrum of crude 9 indicated
the absence of the (SR,1R,2S)-isomer, 10R. Its enanti-
omer, (SS,1S,2R)-10S, was unequivocally synthesized
(vide infra), and its TLC and 1H and 13C NMR spectra
were different from those of 9. Apparently, the base 7
deprotonates 6 regioselectively to allow a chelation of the
lithium ion with the sulfoxide oxygen as depicted in 1.10
The optical purity of 9 was determined to be >99% ee by
oxidation with m-chloroperbenzoic acid (m-CPBA) to
sulfone 11 (90% yield) followed by esterification with
Mosher’s acid chloride 12R11 to give ester 13. The 1H
NMR spectrum of crude 13 indicated only two doublets,
one at δ 5.67 and the other at 5.32 ppm, assigned to the
CH2O of 13. The Mosher derivatives of 11 from the
reaction with racemic acid chloride (R,S)-(()-12were also
prepared, and the 1H NMR spectrum of the products
showed two sets of chemical shifts indicating two dia-
stereomers; the resonances of CH2O of diastereomer 14
appeared at δ 5.58 (doublet) and 5.36 (doublet).12

Various disubstituted ferrocenes were synthesized in
excellent yields by reactions of anion 1 with a variety of
electrophiles of carbon (ethyl formate, methyl chlorofor-
mate, allyl bromide), silicon (CH2dCHCH2SiMe2Cl,
ClCH2SiMe2Cl), tin (Me3SnCl), and phosphorus (Ph2PCl).
The oxygen electrophile bis(trimethylsilyl) peroxide pro-
vided only a 66% yield. The results are summarized in
Table 1. The regiochemistry and optical purity of alde-

hyde 15 and ester 16 were determined by the following
correlations. Reduction of 15 with NaBH4 in MeOH at
25 °C gave 9 (77% yield) (Scheme 3), whose NMR spectra
and specific rotation were identical with those of the
sample obtained from the reaction of 1 with (HCHO)n.
Reduction of 16 of the corresponding sulfide with zinc in
acetic acid at 25 °C (48% yield; based on 3% recovery of
16) followed by treatment with LiAlH4 in ether (96%
yield) gave alcohol 23, whose spectral data and specific
rotation were identical to those obtained from the product
of the reduction of sulfoxide 9 with DIBALH and LAH
in ether at 25 °C (49% yield).13 Other disubstituted fer-
rocenes, 17-22, were assumed to have the same regio-
chemistry. Sulfide 23was stereoselectively oxidized with
1 equiv of m-CPBA in THF at 25 °C to give (SS,1S,2R)-
10S (95% yield).
Stereoselective addition of an organometallic reagent

to aldehyde 15 was achieved by prechelation with Ti(O-
i-Pr)4 in THF followed by reaction with PhMgCl to give
an 89% yield of alcohol (1′S)-24.14 The stereochemistry
of 24 was determined by single-crystal X-ray analysis.
Without the addition of Ti(O-i-Pr)4, 24 and its 1′R-isomer
were produced in a 4.4:1 ratio. The transition state of
this addition reaction, proposed in structure 25, suggests
attack by the phenyl group to the aldehyde function from
the si-face15a of the aldehyde.15b
In summary, various enantiomerically pure bidentates

were synthesized that contain a sulfinyl, sulfonyl, or
sulfenyl moiety at C-1 and a carbon or heteroatom sub-
stituent at C-2 of the ferrocene ring. The use of these
bidentates in asymmetric catalytic reactions is being
investigated. (SR,1S,2R)-1-(tert-butylsulfinyl)-2-formyl-
ferrocene (15) has been shown to undergo stereoselective
nucleophilic addition reactions with Grignard reagents
under chelation control conditions.

Supporting Information Available: Procedures for the
preparations and full characterization of 4-7, 9-11, and 13-24,
partial 1H NMR spectra (the CH2OCdO region) of 13 and a
mixture of 13 and 14, and the ORTEP drawing of the X-ray
crystallographically determined structure of 9 (20 pages).
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